

Overview

The LC75412E and 75412W are electronic volume controllers that enable control of volume, balance, fader, bass/treble, loudness, input switching, and input gain using only a small number of external components.

Functions

- Volume: 0 dB to -79 dB in $1-\mathrm{dB}$ steps, and $-\infty(81$ positions) Balance function with separate L / R control
- Fader: rear output or front output can be attenuated across 16 positions (in $1-\mathrm{dB}$ steps from 0 dB to $-2 \mathrm{~dB}, 2-\mathrm{dB}$ steps from -2 dB to $-20 \mathrm{~dB}, 10-\mathrm{dB}$ steps from -20 dB to -30 dB , and -45 dB , $-60 \mathrm{~dB},-\infty$)
- Bass/treble: Each band can be controlled in 2-dB steps from $\pm 0 \mathrm{~dB}$ to $\pm 18 \mathrm{~dB}$.
- Input gain: 0 dB to +18.75 dB ($1.25-\mathrm{dB}$ steps) amplification is possible for the input signal.
- Input switching: Six input signals can be selected for Left and for Right (five are singleended inputs and one is a differential input.)
- Loudness: A tap is output from the -32 dB position of a volume control resistor ladder. A loudness function can be implemented by connecting an external RC circuit.

Features

- On-chip buffer amplifier cuts down number of external components
- Low switching noise generated by on-chip switch through use of silicon gate CMOS process, for low switching noise when there is no signal
- Low switching noise when there is a signal due to use of on-chip zero-cross switching circuit
- On-chip $1 / 2$ VDD reference voltage circuit
- Controls performed with serial input (CCB)

[^0]
Abstract

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

■ SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Package Dimensions

unit: mm
3159-QIP64E

unit: mm
3190-SQFP64

Pin Assignment

Equivalent Circuit Block Diagram/Sample Application Circuit

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathbf{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions		Ratings	Unit
Maximum supply voltage	V_{DD} max	V_{DD}		11	V
Maximum input voltage	$\mathrm{V}_{\text {IN }}$ max	All input pins		$\mathrm{V}_{S S}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Allowable power dissipation	Pd max	Ta $\leq 85^{\circ} \mathrm{C}$, when mounted on board	QIP64E	680	mW
			SQFP64	800	
Operating temperature	Topr			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg			-50 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	V_{DD}	$V_{D D}$	6.0		10	V
Input high-level voltage	V_{IH}	CL, DI, CE	4.0		10	V
Input low-level voltage	$\mathrm{V}_{\text {IL }}$	CL, DI, CE	V_{SS}		1.0	V
Input amplitude voltage	$\mathrm{V}_{\text {IN }}$		V_{SS}		$V_{\text {DD }}$	Vp-p
Input pulse width	TøW	CL	1			$\mu \mathrm{s}$
Setup time	Tsetup	CL, DI, CE	1			$\mu \mathrm{s}$
Hold time	Thold	CL, DI, CE	1			$\mu \mathrm{s}$
Operating frequency	fopg	CL			500	kHz

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Pin Name	Conditions	Ratings			Unit
				min	typ	max	
[Input block]							
Input resistance	Rin	L1 to L4, L6, R1 to R4, R6		25	50	100	k Ω
Minimum input gain	Ginmin	L1 to L4, L6, R1 to R4, R6		-1	0	+1	dB
Maximum input gain	Ginmax			+16.5	+18.75	+21	dB
Step setting error	ATerr					± 0.5	dB
L/R balance	BAL					± 0.5	dB
[Volume Block]							
Input resistance	Rvr	LVRIN, RVRIN, loudness off		25	50	100	k Ω
Step setting error	ATerr					± 0.5	dB
L/R balance	BAL					± 0.5	dB
[Tone block]							
Step setting error	ATerr					± 1.0	dB
Bass control range	Gbass		max. boost/cut	± 15	± 18	± 21	dB
Treble control range	Gtre		max. boost/cut	± 15	± 18	± 21	dB
L/R balance	BAL					± 0.5	dB

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pin Name	Conditions	Ratings			Unit
				min	typ	max	
[Fader Block]							
Input resistance	Rfed	LFIN, RFIN		25	50	100	$\mathrm{k} \Omega$
Step setting error	ATerr		OdB to -2dB			± 0.5	dB
			-2 dB to -20 dB			± 1	dB
			-20dB to -30dB			± 2	dB
			-30 dB to -60 dB			± 3	dB
L/R balance	BAL					± 0.5	dB
[General]							
Total harmonic distortion	THD (1)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBV}, \mathrm{f}=1 \mathrm{kHz}$			0.004	0.01	\%
	THD (2)	$\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{dBV}, \mathrm{f}=10 \mathrm{kHz}$			0.006	0.01	\%
Input crosstalk	CT	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$		80	88		dB
L/R crosstalk	CT	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$		80	88		dB
Maximum attenuated output	Vomin (1)	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$		80	88		dB
	Vomin (2)	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$ INMUTE, fader $-\infty$		90	95		dB
Output noise voltage	$\mathrm{V}_{\mathrm{N}}(1)$	Flat overall, IHF-A filter			5	10	$\mu \mathrm{V}$
	$\mathrm{V}_{\mathrm{N}}(2)$	Flat overall, 20 to 20 kHzBPF			7	15	$\mu \mathrm{V}$
Current drain	IDD				55	60	mA
Input high-level current	$\mathrm{IIH}^{\text {H }}$	CL, DI, CE, $\mathrm{V}_{\text {IN }}=9 \mathrm{~V}$				10	$\mu \mathrm{A}$
Input low-level current	$1 / \mathrm{L}$	CL, DI, CE, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		-10			$\mu \mathrm{A}$
Maximum input voltage	V_{CL}	$\begin{aligned} & \text { THD }=1 \%, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { flat overall, } \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz} \end{aligned}$		2.3	2.5		Vrms
Common-mode rejection ratio	CMRR	$\mathrm{V}_{\text {IN }}=0 \mathrm{~dB}, \mathrm{f}=1 \mathrm{kHz}$			70		dB

Control Timing and Data Format

To control the LC75412E and LC75412W input specified serial data to the CE, CL, and DI pins.
The data configuration consists of a total of 52 bits broken down into 8 address bits and 44 data bits.

Address code (B0 to A3)

The LC75412E and 75412W use 8-bit address code and can be used in common with ICs that support SANYO's CCB serial bus.

Address Code

(LSB) | B0 | B1 | B2 | B3 | A0 | A1 | A2 | A3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Control code allocation

Input Switching Control

D0	D1	D2	Setting	Setting
0	0	0	L1 (R1)	
1	0	0	L2 (R2)	
0	1	0	L3 (R3)	
1	1	0	L4 (R4)	
0	0	1	L5 (R5)	
1	0	1	L6 (R6)	

[^1]Input Gain Control

D4	D5	D6	D7	
0	0	0	0	0 dB
1	0	0	0	+1.25 dB
0	1	0	0	+2.50 dB
1	1	0	0	+3.75 dB
0	0	1	0	+5.00 dB
1	0	1	0	+6.25 dB
0	1	1	0	+7.50 dB
1	1	1	0	+8.75 dB
0	0	0	1	+10.0 dB
1	0	0	1	+11.25 dB
0	1	0	1	+12.5 dB
1	1	0	1	+13.75 dB
0	0	1	1	+15.0 dB
1	0	1	1	+16.25 dB
0	1	1	1	+17.5 dB
1	1	1	1	+18.75 dB

Volume Control (0 to -40 dB)

D8	D9	D10	D11	D12	D13	D14	D15	Operation
0	0	0	0	0	0	0	0	OdB
1	0	0	0	0	0	0	0	-1dB
0	1	0	0	0	0	0	0	-2dB
1	1	0	0	0	0	0	0	-3dB
0	0	1	0	0	0	0	0	-4dB
1	0	1	0	0	0	0	0	-5dB
0	1	1	0	0	0	0	0	-6dB
1	1	1	0	0	0	0	0	-7dB
0	0	0	1	0	0	0	0	-8dB
1	0	0	1	0	0	0	0	-9dB
0	1	0	1	0	0	0	0	-10dB
1	1	0	1	0	0	0	0	-11dB
0	0	1	1	0	0	0	0	-12dB
1	0	1	1	0	0	0	0	-13dB
0	1	1	1	0	0	0	0	-14dB
1	1	1	1	0	0	0	0	-15dB
0	0	0	0	1	0	0	0	-16dB
1	0	0	0	1	0	0	0	-17dB
0	1	0	0	1	0	0	0	-18dB
1	1	0	0	1	0	0	0	-19dB
0	0	1	0	1	0	0	0	-20dB
1	0	1	0	1	0	0	0	-21dB
0	1	1	0	1	0	0	0	-22dB
1	1	1	0	1	0	0	0	-23dB
0	0	0	1	1	0	0	0	-24dB
1	0	0	1	1	0	0	0	-25dB
0	1	0	1	1	0	0	0	-26dB
1	1	0	1	1	0	0	0	-27dB
0	0	1	1	1	0	0	0	-28dB
1	0	1	1	1	0	0	0	-29dB
0	1	1	1	1	0	0	0	-30dB
1	1	1	1	1	0	0	0	-31dB
0	0	0	0	0	1	0	0	-32dB
1	0	0	0	0	1	0	0	-33dB
0	1	0	0	0	1	0	0	-34dB
1	1	0	0	0	1	0	0	-35dB
0	0	1	0	0	1	0	0	-36dB
1	0	1	0	0	1	0	0	-37dB
0	1	1	0	0	1	0	0	-38dB
1	1	1	0	0	1	0	0	-39dB
0	0	0	1	0	1	0	0	-40dB

Volume Control (-41 to $-\infty \mathrm{dB}$)

D8	D9	D10	D11	D12	D13	D14	D15	Operation
1	0	0	1	0	1	0	0	-41dB
0	1	0	1	0	1	0	0	-42dB
1	1	0	1	0	1	0	0	-43dB
0	0	1	1	0	1	0	0	-44dB
1	0	1	1	0	1	0	0	-45dB
0	1	1	1	0	1	0	0	-46dB
1	1	1	1	0	1	0	0	-47dB
0	0	0	0	1	1	0	0	-48dB
1	0	0	0	1	1	0	0	-49dB
0	1	0	0	1	1	0	0	-50dB
1	1	0	0	1	1	0	0	-51dB
0	0	1	0	1	1	0	0	-52dB
1	0	1	0	1	1	0	0	$-53 \mathrm{~dB}$
0	1	1	0	1	1	0	0	$-54 \mathrm{~dB}$
1	1	1	0	1	1	0	0	-55dB
0	0	0	1	1	1	0	0	-56dB
1	0	0	1	1	1	0	0	-57dB
0	1	0	1	1	1	0	0	$-58 \mathrm{~dB}$
1	1	0	1	1	1	0	0	-59dB
0	0	1	1	1	1	0	0	-60dB
1	0	1	1	1	1	0	0	-61dB
0	1	1	1	1	1	0	0	-62dB
1	1	1	1	1	1	0	0	-63dB
0	0	0	0	0	0	1	0	-64dB
1	0	0	0	0	0	1	0	-65dB
0	1	0	0	0	0	1	0	-66dB
1	1	0	0	0	0	1	0	-67dB
0	0	1	0	0	0	1	0	-68dB
1	0	1	0	0	0	1	0	-69dB
0	1	1	0	0	0	1	0	-70dB
1	1	1	0	0	0	1	0	-71dB
0	0	0	1	0	0	1	0	-72dB
1	0	0	1	0	0	1	0	-73dB
0	1	0	1	0	0	1	0	-74dB
1	1	0	1	0	0	1	0	-75dB
0	0	1	1	0	0	1	0	-76dB
1	0	1	1	0	0	1	0	-77dB
0	1	1	1	0	0	1	0	-78dB
1	1	1	1	0	0	1	0	-79dB
	1	1	1	1	1	1	0	-

Tone Control

D16	D17	D18	D19	D40	Bass
D24	D25	D26	D27	D41	Treble
1	1	0	0	1	+18 dB
0	1	0	0	1	+16 dB
1	0	0	0	1	+14 dB
0	1	1	0	0	+12 dB
1	0	1	0	0	+10 dB
0	0	1	0	0	+8 dB
1	1	0	0	0	+6 dB
0	1	0	0	0	+4 dB
1	0	0	0	0	+2 dB
0	0	0	0	0	0 dB
1	0	0	1	0	-2 dB
0	1	0	1	0	-4 dB
1	1	0	1	0	-6 dB
0	0	1	1	0	-8 dB
1	0	1	1	0	-10 dB
0	1	1	1	0	-12 dB
1	0	0	1	1	-14 dB
0	1	0	1	1	-16 dB
1	1	0	1	1	-18 dB

D20	D21	D22	D23		
0	0	0	0		Set to 0

Fader Volume Control

D28	D29	D30	D31	
0	0	0	0	0 dB
1	0	0	0	-1 dB
0	1	0	0	-2 dB
1	1	0	0	-4 dB
0	0	1	0	-6 dB
1	0	1	0	-8 dB
0	1	1	0	-10 dB
1	1	1	0	-12 dB
0	0	0	1	-14 dB
1	0	0	1	-16 dB
0	1	0	1	-18 dB
1	1	0	1	-20 dB
0	0	1	1	-30 dB
1	0	1	1	-45 dB
0	1	1	1	-60 dB
1	1	1	1	$-\infty$

Channel Selection Control

D32	D33		Operation
0	0		
1	0	RCH	
0	1	LCH	
1	1	L/R simultaneously	

Fader Rear/Front Control

D34	Setting
0	Rear
1	Front

Loudness Control

D35	Setting
0	OFF
1	ON

Zero-Cross Control

D36	D37	Setting
0	0	Data write through zero-cross detection
1	1	Zero-cross detection stopped (data write at falling edge of CE)

Zero-Cross Signal Detection Block Control

D38	D39	
0	0	Selector
1	0	Volume
0	1	Tone
1	1	Fader

Test Mode Control

D42	D43	Setting
0	0	For IC testing. Always set to 0.

Pin Functions

Pin Name	Pin No.	Function	Equivalent circuit
L1 L2 L3 L4 L6 R1 R2 R3 R4 R6	54 53 52 51 55 59 60 61 62 58	- Single-end input pins	
$\begin{aligned} & \text { L5M } \\ & \text { L5P } \\ & \text { R5M } \\ & \text { R5P } \end{aligned}$	$\begin{aligned} & 50 \\ & 49 \\ & 63 \\ & 64 \end{aligned}$	- Differential input pins	
$\begin{aligned} & \text { LSELO } \\ & \text { RSELO } \end{aligned}$	$\begin{gathered} 48 \\ 1 \end{gathered}$	- Input selector output pins	
$\begin{aligned} & \text { LCT } \\ & \text { RCT } \end{aligned}$	$\begin{gathered} 46 \\ 3 \end{gathered}$	- Loudness pins. Connect high-pass compensation RC between LCT (RCT) and LVRIN (RVRIN), and connect low-pass compensation RC between LCT (RCT) and GND.	
LVRIN RVRIN	$\begin{gathered} 47 \\ 2 \end{gathered}$	- Volume and equalizer input pins.	

Continued on next page.

Continued from preceding page.

Continued on next page

Continued from preceding page.

Pin Name	Pin No.	Function	Equivalent circuit
LFOUT LROUT RFOUT RROUT	$\begin{aligned} & 31 \\ & 30 \\ & 18 \\ & 19 \end{aligned}$	- Fader output pins. Attenuation is possible separately for the front end and rear end. The attenuation amount is the same for L and R.	
Vref	57	- Connect a capacitor of a few tens of $\mu \mathrm{F}$ between Vref and AVSS (VSS) as a VDD/2 voltage generator, current ripple countermeasure.	
VDD	56	- Power supply pin	
DVSS	27	- Logic system ground pin	
LAVSS RAVSS	$\begin{aligned} & 29 \\ & 22 \end{aligned}$	- Analog system ground pins	
$\overline{\text { MUTE }}$	23	- External muting control pin - Setting this pin to V_{SS} level sets forcibly fader volume block to $-\infty$ level.	
TIM	20	- Timer pin when there is no signal in the zero-cross circuit. Forcibly set data when there is no zero-cross signal, from the time the data is set until the timer ends.	
$\begin{aligned} & \text { CL } \\ & \text { DI } \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \end{aligned}$	- Input pin for serial data and clock used for control	VDD
CE	24	- Chip enable pin. Data is written to the internal latch and the analog switches are operated when the level changes from High to Low. Data transfer is enabled when the level is High.	$\frac{\bullet}{\pi 1}$

Internal Equivalent Circuit Block Diagram

Selector Block Equivalent Circuit Block Diagram

Volume Block Equivalent Circuit Block Diagram

Tone Control Block Equivalent Circuit Diagram

During boost, SW 1 and SW 3 are ON, during cut SW 2 and SW 4 are ON, and when $0 \mathrm{~dB}, 0 \mathrm{~dB}$ SW and SW 2 and SW 3 are ON.

F1/F3 Band Circuit
The equivalent circuit and the formula for calculating the external RC with a mean frequency of 1 kHz are shown below.

- F1/F3 band equivalent circuit block diagram

- Calculation example

Specification Mean frequency: f0 $=1 \mathrm{kHz}$
Gain during maximum boost: $\mathrm{G}_{+18 \mathrm{~dB}}=18 \mathrm{~dB}$
Let us use $\mathrm{R} 1=0.665 \mathrm{k} \Omega, \mathrm{R} 2=58.704 \mathrm{k} \Omega$, and $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C}$.

$$
G_{+18 \mathrm{~dB}}=20 \times \operatorname{LOG}_{10}\left(1+\frac{\mathrm{R} 2}{2 \mathrm{R} 3+\mathrm{R} 1}\right)
$$

1. Calculate R 3 with $\mathrm{G}_{+18 \mathrm{~dB}}=18 \mathrm{~dB}$:

$$
R 3=\left(\frac{\mathrm{R} 2}{10^{\mathrm{G} / 20}-1}-\mathrm{R} 1\right) \div 2=3900 \Omega
$$

2. Calculate C with the center frequency $\mathrm{f} 0=1 \mathrm{kHz}$

$$
\begin{aligned}
& f 0=\frac{1}{2 \pi \sqrt{(R 1+R 2) R 3 C 1 C 2}} \\
& C=\frac{1}{2 \pi f 0 \sqrt{(R 1+R 2) R 3}}=\frac{1}{2 \pi \times 1000 \sqrt{39359 \times 3900}}=0.010 \times 10^{-6} \cong 0.01 \mu \mathrm{~F}
\end{aligned}
$$

3. Calculate Q :

$$
Q=\frac{1}{\sqrt{(R 1+R 2) R 3}} \times \frac{R 3(R 1+R 2)}{(2 R 3+R 1)} \cong 1.789
$$

Fader Volume Block Equivalent Circuit Block Diagram

When $-\infty$ data is sent to the main volume, S1 and S2 become open, and S3 and S4 simultaneously become ON.

Usage Cautions

(1) Data transmission at power ON

- The status of internal analog switches is unstable at power ON. Therefore, perform muting or some other countermeasure until the data has been set.
(2) Description of zero-cross switching circuit operation

The LC75412E and 75412W have a function to switch zero-cross comparator signal detection locations, enabling the selection of the optimum detection location for blocks whose data is to be updated. Basically, the switching noise can be minimized by inputting the signal immediately following the block whose data is to be updated to the zero-cross comparator, so it is necessary to switch the detection location every time.

LC75412E, 75412W Zero-Cross Detection Circuit

(3) Zero-cross switching control method

The zero-cross switching control method consists of setting the zero-cross control bits to the zero-cross detection mode (D36, D37 = 0), and specifying the detection blocks (D38, D39) before transmitting the data. These control bits are latched immediately following data transfer, that is to say beforehand in sync with the falling edge of CE, so when updating data of volumes, etc., it is possible to perform mode setting and zero-cross switching with one data transfer. An example of control when updating the data of the volume block is shown below.

(4) Zero-cross timer setting

If the input signal becomes lower than the zero-cross comparator detection sensitivity, or if only low-frequency signals are input, zero-cross detection continues to be impossible, and data is not latched during this time.
The zero-cross timer can set a time for forcible latch during such a status when zero-cross detection is not possible.

For example, to set 25 ms ,
using $\mathrm{T}=0.69 \mathrm{CR}$ and $\mathrm{C}=0.033 \mu \mathrm{~F}$,
we obtain

$$
\mathrm{R}=\frac{25 \times 10^{-3}}{0.69 \times 0.033 \times 10^{-6}} \fallingdotseq 1.1 \mathrm{M} \Omega
$$

Normally, a value between 10 ms and 50 ms is set.
(5) Cautions related to serial data transfer

1. To ensure that the high-frequency digital signals transferred to the CL, DI, and CE pins do not spill over to the analog signal block, either guard these signal lines with a ground pattern, or perform transmission using shielded wires.
2. The data format of the LC75412E and 75412 W uses 8 -bit addresses and 44 -bit data. When sending data using multiples of 8 (when sending 48 bits), use the method described in Figure 1.

Method for Receiving Data Using Multiple of 8 of LC75412E and 75412W

X : don't care
Figure 1
(6) Note on usage of external muting

When using external mute function, take adequate countermeasures against noise to prevent malfunction.

Loudness Characteristics

Feder Step Characteristics

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
\square SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
\square No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.

■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of Octomber, 2001. Specifications and information herein are subject to change without notice.

[^0]: - CCB is a trademark of SANYO ELECTRIC CO., LTD.
 - CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

[^1]: D3 \quad Bit for IC testing: Normally set to 0

